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An attempt is made in this paper to describe the solid particle motion in a flowing (agitated) 
incompressible liquid on the assumption that this motion may be considered as a diffusion Markov 
process. It is shown that such a procedure leads to a relation which differs from the diffusion 
equation commonly used in chemical engineering by the form of diffusion term. The expression 
proposed, unlike the relation usually used, makes it possible to describe the local concentration 
extremes of solid phase in the charge mixed. 

The description of the solid particle motion III a mechanically agitated charge is 
generally a very demanding task. Exact relations for expressing the flow of such 
a two-phase system are too complicated 1.2, and can not be practically solved for such 
a complex arrangement as, e.g., a vessel equipped with a rotary mechanical impeller, 
or, if need be, with various internals. 

Therefore, usually a subject of interest of chemical-engineering study of such 
systems is the investigation of their overall characteristics such as the input power 
of impeller and differently defined so-called critical frequencies of the impeller 
revolutions which aim at finding the appropriate regime of mixing apparatus from 
the point of view of suspending the solid particles. The results of research of this 
type are summarized in monographs on mixing3 - 5 . 

Substantially less attention has hitherto been paid to the local characterization 
of the solid phase-liquid system, i.e., to the distribution of concentrations in the 
volume of apparatus. 

Mathematic description has consisted in the use of an equation of turbulent dif
fusion applied even to the two-phase flow motion in other arrangements or to the 
homogenization of miscible liquids in agitated (incompressible) charge3 • In a general 
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form it is possible to write this equation by the relation 

oe. + (Ves) . v - V . (D: VQs) = 0, ot 

1911 

(1) 

where the symbol Qs denotes the solid phase concentration in liquid, v the velocity 
of suspension and D: the eddy diffusivity. The latter quantity is, however, in general 
a function of spatial coordinates, and is usually considered as well as a second-order 
tensor6 - 8. In the concrete, above-mentioned cases3 - 5, however, this quantity was 
considered as a constant in the whole volume of charge. 

In this work, an approach is proposed which leads to an equation analogous to 
relation (1) with a varying diffusion coefficient, however, in the form which, as it 
will be shown below, enables one to describe local maxima of the solid phase con
centration in charge. 

THEORETICAL 

Let us consider a part of space limited by impermeable walls with regard to mass 
transfer which is filled-up with a charge consisting of incompressible liquid and a set 
of solid particles of component A of the same mass and the same shape. A source of 
momentum operates in the charge, moving in such a way that the resulting motion 
of the charge is random. 

Tn the space considered let us define a point which will be chosen as an origin 
of orthonormed system. 

The position of each particle will then be expressed in terms of the position vector 
RJt) whose end tracks the position of the particle centre of gravity (the SUbscript 
i denotes that the i-th particle from a set of N particles is considered). This 
vector is in general a random function of time; the velocity of the i-th particle is then 
defined by the relation 

Viet) == dRi(t)/dt . (2) 

On each of the solid particles then act partly external forces, partly interactions 
with the other particles and with the liquid which surrounds these particles. It would 
then be possible to write the equation of motion for each the particle in the form 
of the second Newton law. The resultant force causing the time change in momentum 
of a given particle would then be - as it follows from statistical mechanics9 - ge
nerally a function of position vectors and velocities of all the particles, the velocity, 
or even acceleration, of liquid and some other quantities (properties of particles 
and liquid): 

(3) 
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(Subscript B is here assigned to liquid). The form of the set of these equations could 
apparently be given more precision, however, in no case solved. Therefore we in
troduce at his point strongly restricting assumptions which, however, considerably 
simplify the situation. 

But first we define the term needed when formulating the presuppositions on the 
motion of liquid: 

The virtual displacement of liquid will be regarded as the product of the liquid 
velocity as a random function of time and spatial coordinates and differential time 
interval, i.e. 

dZ(x, t) = VB(x, t) dt. (4) 

The expression on the left-hand side can be considered as an infinitesimal displace
ment of liquid which has occurred at the moment t at the point of space determined 
by the radius vector x in the direction of velocity VB' 

Further we shall write down the presuppositions concerning the liquid: 

PI. The liquid flow is a priory known as a stationary random function of spatial co
ordinates and time. 

P2. The virtual displacement of liquid consists of two parts: deterministic - de
termined by a mean (expected) value of the liquid velocity and random - condi
tioned by a fluctuation component of velocity; this random component of the virtual 
displacement can be expressed as the product of the deterministic function of space 
coordinates (which can generally be a tensor of the second order) and the differential 
of the three-dimensional Wiener process10• 

P3. The quantity of particles of component A in charge is so small that it does not 
significantly influence the motion of the liquid phase. 

Now we proceed to the formulation of presuppositions concerning the forces acting 
on solid particles: 

P4. On each particle of component A acts the friction force which is proportional to 
the difference of velocities of the given particle and the liquid which would occur 
at the given moment in the centre of inertia of this particle. The coefficient of pro
portionality is a constant, and the friction force points against the direction of the 
particle motion. 

P5. On each particle acts the mass force which is a deterministic function of the posi
tion of centre of inertia of the particle itself. 

P6. The resultant of interactions between the particle considered and the other 
particles of component A and as well between the molecules of liquid and the given 
particle is a random function of time whose impulse is proportional to the three
-dimensional Wiener process. This process and the Wiener process considered in the 
presupposition P2 are mutually independent. The coefficient of proportionality is 
generally a scalar function of the position of centre of inertia of the given particle. 
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In the end we write down a presupposition enabling one to transfer the dynamic 
problem of description of the particle motion of component A to a kinematic one: 

P7. A change of velocity of any particle of component A during a sufficiently long 
time interval may be neglected with regard to the change of its position in the same 
time interval. 

Discussion of the presuppositions: 

The presupposition sub PI expresses only the fact that the idea proposed does not 
serve for solving the liquid motion in charge under steady-state conditions of mixing; 
it is considered here as given in advance and completely described. In a general case 
of random (turbulent) flow it means that the corresponding probability characteristics 
arc known, too. The presupposition P2 further characterizes the random flow of 
liquid in such a sense that it specifies the character of its velocity fluctuations. It is 
necessary to note that the presupposition imposes considerable limitations on the 
time course of these fluctuations for there exists no derivative with respect to time lO 

for the Wiener process. The third presupposition is here, in fact, a consequence of 
the first one; investigation of the effect of component A on the liquid flow would 
require a form of equation of motion of suspension allowing for the interactions 
between particles of component A and particles of liquid which influence the own 
liquid motion. The presupposition P4 postulates a very simple - linear - idea ofthe 
relation between the velocity of liquid and those of the particle itself; the particle 
motion is retarded so that great differences between the velocities cause great changes 
of the particle momentum in the opposite direction. The point of action of the friction 
force is hypothetically located into the centre of inertia of particle; this part of the 
presupposition is to express the idea that on the particle of component A acts above 
all the liquid which immediately surrounds it. The presupposition P5 specifies the 
action of external forces on the particle. Finally, the presupposition P6 specifies the 
effect of particle of component A and of continuous phase (liquid molecules) on the 
given particle; it characterizes them only as random mutually independent pulses 
irrespective of the actual values of momentums, or positions of these neighbouring 
particles. As it will be shown below, the presupposition P7 plays a significant role 
in deriving the equation of diffusion. Let us note at once, however, that its ac
ceptance is rather problematic. Changes of momentum of particle due to the Wiener 
process in a short time interval can exhibit a very high value; only if averaged within 
a sufficiently long time interval with regard to the mentioned retarding action of 
friction force makes the assumption plausible. 

Now let us write the relations following from the presuppositions. The presup
position PI states that, in a general case, the probability density of a random (three
-dimensional) vector field of liquid (see e.g. 11 ) is given: 
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where VBi(X, t) are the single components of vector field VB at a point x and time t. 
The function iB makes it possible to find all the corresponding characteristics: The 
first moment (expected value) is, e.g., given by the relation 

<VB(X» == E[VB(X, t)] = fVBfB(VB; x) dQvB = 

=.t ejfff+OOVBJB(VB,' VB2' VB3 ; x) dVB! dVB2 dvB.,· 
J 1 - 00 

(6) 

The last sum of integrals only explains the way of integration, symbol e j denotes 
the single vectors of base. 

The second presupposition makes it possible to write the vector field of velocities 
as a superposition of the deterministic and random contributions: 

dZ(x, t) = VB(x, t) dt = <vB(x» dt + V:(x, t) dt = 

= <v;lx, t» dt + hB(X) . d WB(t) . (7) 

The symbol V: denotes the random fluctuations of the velocity field which are further 
specified as a scalar product of tensor hB and differential of the three-dimensional 
Wiener process WB• 

The third presupposition only states that the functions written in Eqs (5)-(7) 
are not significantly influenced when adding the component A. 

The forces acting on the i-th particle can be written in agreement with the single 
presuppositions: 
The friction force is according to the presupposition P4 given by the relation 

(8) 

The action of the velocity field of liquid is related to the inertial centre of particle 
whose position is given by the radius vector Ri , f3 denotes a scalar constant. 

The resultant forces of mass forces acting on the particle can be, according to 
P5, written by the relation 

(9) 

where rnA is the mass of arbitrary particle of component A and Q the resultant of 
intensities of mass forces. 
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The last - random - force as a resultant of pulses can be expressed as the product 
of a non-random scalar function of the particle position and a differential of the 
Wiener process: 

(10) 

The sum of pulses of these forces is equal to the change of momentum of the i-th 
particle of component A, i.e. 

rnA dVJt) = -P[Vj(t) - VB(Rj(t), t)] dt + rnAa[Rj(t)] dt + (11) 

+ u[Rj(t)] dWA(t). 

This relation forms along with relation (2) a system of stochastic differential equa
tions making it possible to describe the position and velocity of component A as 
random functions of time in moving liquid. 

The randomizing effect upon the particle has partly the liquid velocity itself (as 
far as the flow retains turbulent character), partly the motion of particles surrounding 
the given particle. 

The equation written in this way includes, however, a random function of random 
argument, VB(Rj(t), t) and does not describe in this form the velocity Vj(t) as the 
Markov diffusion process10. However, if we insert here from Eq. (7) the actual 
expression for this function, we obtain the relation 

I1lA dVj(t) = - P[Vj(t) - (vB(Rj(t))>] dt + rnAa[Rj(t)] dt + 
+ P hB[RJt)] . d WB(t) + u[Rj(t)] d WA(t) (12) 

which already makes it possible to write the corresponding partial differential for
ward Kolgomorov equation for the six-dimensional transition probability density 
characterizing the distribution of position and velocity of the ;-th particle of com
ponent A. 

In this place, however, we insert from Eq. (2) into (12): 

rnA dVj(t) + P dRj(t) = P (VB [Rj(t)]> dt + rnAa[Rj(t)] dt + 
+ P hB[Rj(t)]. dWB(t) + u[Rj(t)] dWA(t) (13) 

and neglect, according to the presupposition P7, the first differential on the left-hand 
side with regard to the second one. After rearranging we have 

dRj(t) = {(vB[R1(t)]> + rnAa[Rj(t)]/P} dt + hB[Rj(t)]. dWB(t) + 
+ u[Rj(t)] dWA(t)/p. (14) 
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Now we proceed to write the corresponding Kolgomorov equation. Let us define 
first the transition (conditional) probability density by the relation 

f~l(x; t I xo; -r) = f~lxI' X2' X3; t ! XOl' X02' X 03 ; -r) == 
a3 

- P{Ri1(t) < Xl; Ri2(t) < X2; Ri3(t) < X3! Ri(-r) = 
aXlaXlaX3 

(15) 

where the subscripts 1,2,3 denote the components of the position vector of the i-th 
particle. 

It is possible to show10 that for this function holds a partial differential equation 
whose coefficients are connected with those of stochastic differential equation (14) 

af~i(X;;} Xo; -r) + V • {[ (vB{X) + mAa(x)/p]f~i} _ 

- tTr{[V2. hB(x). h~(x)]f~i} - 1/2p2 ACT2(X)f~i = o. (16) 

Here V2 = VV expresses the dyadic product of two differential operators, A = V. V 
is the Laplace operator, h~ is the second-order tensor whose matrix is a transposed 
matrix with regard to the matrix of tensor h. 

The given equation is to be solved in principle at the given initial and boundary 
conditions. 

Here we shall write only the solution of the Cauchy problem, i.e., we shall assume 
that the position of the i-th particle at initial moment is given; the initial probability 
density is then the Dirac function 

(17) 

Equation (16) is linear with respect to the solution f~l; its solution then will be 
evidently also the (unconditioned) probability density 

fRi(X; t) = f f~l(x; t ! Xo; 0) <>x(xo - x?) dQR , 
DR 

(18) 

where the integration is carried out over the whole charge volume considered. 

With regard to the presuppositions introduced, above all to the presupposition 
P6 about random interactions between particles we shall obtain stochastic differential 
equation (13) or (14) for each the particle of component A, and consequently also 
Eq. (16) which does not depend on the position or momentum of the other particles. 
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Therefore we shall obtain N independent equations (16) describing the motions 
of all the solid particles in charge. 

The expression fRi(x; t) aQR(X) then denotes the probability that the given 
particle will occur at a moment t in a small subspace aQR(X) with its centre at a point 
determined by the radius vector x. Now this function is being used to express the 
concentration of solid particles in liquid. Let us denote by symbol li(X, t) the random 
function which takes the value of one in the case that the i-th particle occurs in the 
subspace AQR(x) and the value of zero in the opposite case. Then the quantity 

N 

L li(X, t) 
eA(X, t) == rnA i,-=--=-l __ 

aQR(X) 
(19) 

denotes evidently the mass concentration of solid particles in the subspace AQR(x). 
This quantity is as well a random function. We shall find its expected value 

because the expected value of random quantity Ii is directly equal to its probability 
(see e.gY). The sum of the probability densities of solid particles is therefore pro
portional to the expected value of their density. With regard to the above-mentioned 
considerations, the expected value of (lA(X, t) is also the solution of Eq. (16). 

Now we put yet formally 

vt(X) == rnAa(x)/P 

D~(x) == 1- ho(x) . h~(x) 

DA(x) == ! a2(x) 
2 p2 

(21) 

and insert into Eq. (16). With regard to the discussion of Eq. (20) we obtain finally 

O(]A(X, t) + V . {(]A(X, t) [<vB(x» + vt(x)]} - Tr [V2 . (JA(X, t) D~(x)] -
at . 

- A[(]A(X, t) DA(x)] = O. (22) 

The quantity vt denotes the velocity which the particle would have in steady state 
in liquid at rest. In a turbulent medium, this quantity can be considered only as 
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a correction of the solid phase velocity. This not very satisfactory conclusion results 
from the use of the "bold" presupposition P7. 

The tensor D~ is to be considered as the eddy diffusivity, conditioned, as it follows 
with regard to Eq. (7), by the square of the liquid velocity fluctuations. The scalar 
D A expresses mutual interactions of solid particles. 

In case of isotropic turbulence, the eddy diffusivity can be as well considered to be 
a scalars, i.e., D~ = ID~, where I is the identity tensor. Therefore putting finally 

VeX) = (vB(x» + V1(x) 
and 

(23) 

and considering that the quantity V1(x) does not depend significantly on the spatial 
coordinates, then for an incompressible liquid, when V. vB(x) = 0, we obtain the 
equation 

(24) 

which is, with the exception of the position of coefficient Dr with respect to the 
operator of derivative, identical with the commonly used relation (1). 

We shall show that just this last form makes it possible to describe in steady state, 
unlike Eq. (1), the local concentration maxima of the solid phase in charge. In steady 
state holds evidently the condition 8th/8t = O. The necessary condition of the exis
tence of extreme of a function are further the zero first-order derivatives of concentra
tions, i.e., 8llA/8xl = 8llA/8x2 = 8llA/8x3 = O. 

At a point where the function llA(X) has an assumed extreme, Eq. (24) reduces 
to the relation 

(25) 

The left-hand side of the equation is not generally equal to zero; in dependence 
on its sign, the second-order derivatives of concentrations can form a positive or 
negative definite matrix, which means that the function exhibits either minimum 
or maximum. 

An analogous rearrangement of Eq. (1) leads to the expression 

D~ Ae. = 0, (extreme?) (26) 

from which follows that at a point with zero first-order derivatives, the signs of the 
second-order derivatives have to necessarily differ - the given expression therefore 
does not make it possible to describe an extreme. Thus, the aim of experiments 
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performed was among others to prove the existence of similar extremes in a charge 
solid phase-liquid agitated with a mechanical rotary impeller. 

EXPERIMENTAL 

The experiments were carried out in a cylindrical conical-bottomed vessel 0'29 m in diameter 
with four radial baffles. The vessel was in addition provided with a cylindrical draft-tube (Fig. I). 
A six-blade impeller with inclined (45°) plane blades was used which, when rotating, pumped liquid 
to the bottom. Two ratios of the impeller-to-vessel diameters diD, viz. 0'333 and 0'4 were used. 
The liquid charge was formed by water and glycerol solution. The solid phase was a graded glass 
ballotini: the spherical particles were of mean diameter 0'45.10- 3 and 0'925.10- 3 m and of 
density 2640 kg/m3 . The solid phase concentration was equal 4 and 8 volume ~,. The impeller 
frequency of revolutions was chosen so as to approach approximately to the critical value for 
suspendation and varied within 4'0- 7'0 s -1 . 

The solid phase concentration was determined by a calibrated capacity sensor13. The con
centration was measured in a vertical plane between the draft-tube and the vessel wall (hatched 
surface in Fig. 1) always in 24 places under the same conditions of mixingl4. 

Two examples of the experimental results are illustrated in the form of isoconcentration curves 
in Figs 2 and 3. They are denoted by the letter a. 

The values of mean liquid velocity as a function of radial and axial coordinate obtained on 
an equipment with analogous geometrical arrangement1 5' and, as well, the data on fiuctuations16 

making it possible to calculate the value of eddy diffusivity (however, only as a function of axial 
coordinate) were moreover available. 

RESULTS AND DISCUSSION 

To describe the results, Eq. (22) was used which was further simplified on using 
these assumptions: 

FIG. I 

Sketch of experimental equipment. (The 
hatched region depicts the region of solution 
of the diffusion equation.) HI = 2/3H, 
h~· O'ID, D z = l'ld, H= D, p= 120°, 
d/D~ 1/3 and 2/5 
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The spatial distribution of the solid phase in charge is stationary. 
The gravitational force plays significant role in the system. (As an attempt, the 

effect of centrifugal force was also taken into consideration.) 
The cylindrical symmetry manifests itself in the system; concentration does not 

depend on the angular coordinate. 
The ratio of eddy diffusivities of solid particle and liquid is equal to the ratio of 

squares of values of the fluctuation components of velocities of both phases. 
The eddy diffusivity of liquid and the last ratio were calculated by means of the 

relations recommended by Lewins and Glastonburry17. 

The dependence of D! on axial coordinate was approximated by a third-order 
polynomial; an example of its graphical representation is given in Fig. 4. 

Then it was possible to write Eq. (22) in cylindrical coordinates 

<VB,> + VA, - + <VBz> + VAz - - DA - - + - + _. -( +) oe ( + ) oe T (1 oe 02e oZe) 
or oz r or or2 OZ2 

FIG. 2 

Isoconcentration curves. 

a 

_ 2 oe oD! _ e 02 D! = 0 . (27) 
OZ OZ OZ2 

.~ 
0 60 I 

~ ... ~\ ! 

~~2 I 

C¥3 I -u: 
b 

a Measured. (Experimental conditions: liquid phase viscosity 3'55.10- 6 m2 s-1, solid sphere 
diameter 0'45 . 10- 4 m, mean volume concentration of solid phase 0'04, frequency of impeller 
revolutions 5·5 s -1, diD = 2/5.) b Calculated for the same conditions as in Fig. 2a 
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Symbol r denotes the radial and z the axial coordinate, c denotes the volume con
centration of the solid phase. (The derivatives of the Dr factor with respect to the 
radial coordinate are not given; the experimental dependence of Dr on this co-

FIG. 3 

Isoconcentration curves. 

a b 

a Measured. (Experimental conditions: frequency of impeller revolutions 3'5 s-1, diD = 1/3. 
otherwise the same as in Fig. 2.) b Calculated for the same conditions as in Fig. 3a 

0·75.-----.-----.-----,-----, 

~-o 0'167 0'333 z/H 

FIG. 4 

Dependence of eddy diffusivity of solid particles on axial coordinate for the conditions given 
in Fig. 2a 
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ordinate was not available.) The boundary conditions were determined from the 
values found experimentally in the upper and lower base of the region investigated 
(see Fig. 1). The boundary conditions on the vertical walls were determined from 
the condition of their impermeability 

« > + ) DAT oc = 0 . VBr + VAr C - or (28) 

The given set of equations was solved numerically in terms of the finite Gauss
-Jordan method 18. Examples of the calculations are illustrated in the form of iso
concentration curves as well in Figs 2 and 3, and are denoted by the leter b. 

As it follows from Figs 2a and 3a under some conditions of mixing, the local 
extremes of the solid phase concentrations of agitated charge were actually found. 
The cases in question were above all the glycerol mixtures. From the comparison 
of the experimental data and the calculated isoconcentration curves (i.e. the plots a 
and b in Figs 2 and 3) it is to conclude that the model proposed exhibits in the best 
case only a qualitative agreement with experimental results. Let us note, however, 
that the use of Eq. (1) rearranged in the same way as Eq. (22), i.e. the use of relation 
(27) without two last terms, or even the use of a constant value of eddy diffusivity, 
did not make it possible in any case to calculate the concentration extremes. 

The unsatisfactory agreement between the computation and experiment is caused, 
regardless of the effect of experimental errors, by applying the kinematic model to 
the process in which the gravitation, or even the centrifugal force, plays a significant 
role. The approach presented here aimed at showing where occurs the drawback 
of applying the equation of diffusion, either in the "probability" or "common" 
form for describing analogous systems. 

A substantially more accurate solution of the problem discussed here could ap
parently be reached by direct applying relation (12) and solving the corresponding 
Kolgomorov equation for the probability density of the type I(x, v; t) where the 
variable v describes the solid particle velocity. Such a procedure would make it 
possible to express in a more real way the effect of forces acting on particles, how
ever, it would lead to far more complicated expressions. Even for a steady-state 
process with regard to the cylindrical symmetry, it would be necessary to solve 
partial differential equation of four variables. 

The procedure proposed here is therefore from this point of view a compromise; 
however, it is to draw attention to some other possibilities of using the mathematic 
apparatus of theory of random processes. 

Q 

b 

LIST OF SYMBOLS 

mass force intensity 
baffle width 
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(' volume concentration of solid phase 
d impeller diameter 
e unit vector 
IB probability density for liquid velocity 
fR probability density for particle position 
hB tensor of fluctuations of liquid velocities 
m mass 
r radial coordinate 

time 
v velocity 
x position vector 
z axial coordinate 
D vessel diameter 
D2 draft-tube diameter 

DT eddy diffusivity 
E operator of expected value 
F force 
H height of liquid in cylindrical part of vessel when impeller at rest 
HI draft-tube height 
I indicator function 

identity tensor 
N number of solid particles 
R radius vector (random function) 
V velocity (random function) 
W Wiener process 
Z virtual displacement 
/3 friction coefficient 
(j Dirac function 
(] 

(J 

T 

m 
n 
o 
r 
s 

z 
A 
B 

c 

* 
+ 

mass concentration 
factor characterizing effect of random force 
volume 

time 
Subscripts 
referring to i-th solid particle 
referring to j-th coordinate 
referring to mass force 
referring to random force 
referring to initial value 
referring to radial coordinate 
referring to solid phase (in "chemical-engineering" expression) 
referring to friction force 
referring to axial coordinate 
referring to solid phase (in "probability" expression) 
referring to liquid 
Superscripts 
referring to transposed tensor 
referring to conditioned density of probability 
referring to fluctuation component 
referring to the particle in liquid at rest 
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(S3 m- 3 ) 

(m- 3) 

(m s -I) 

(kg) 
(m) 
(s) 
(m s -I) 

(m) 
(m) 
(m) 
(m) 

(m2 s-I) 

(kg m s -2) 

(m) 
(m) 

(m) 
(m s-I) 
(sl/2) 

(m) 
(kg s -I) 

(kg m -3) 
(kg m s-3/2) 

(m3) 
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